skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Khater, Mohammad Abu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This work presents an interference-adaptive Gallium Nitride (GaN) low-noise amplifier (LNA) front-end with orthogonal frequency and linearity tuning for applications in communication base stations, radar and electronic warfare (EW). The system operates between 2–6 GHz and provides a sub 5 ms tuning time for an input power tuning range of 40 dB. The orthogonal tuning consists of two phases: 1. frequency tuning with four tunable bandpass and bandstop filters for interference rejection, 2. linearity tuning with a combination of coarse tuning through look-up table (LUT) and fine-tuning through incremental adaptation to trade off power with linearity. GaN LNA’s linearity can be adjusted between P textsubscript 1dB,IN = -10 and 1.5 dBm with output P textsubscript 1dB up to 25 dBm (11.5 dB range) with the LNA power changing from 500 mW to 2 W (x4 increase). The average LNA power with orthogonal frequency and linearity tuning decreases by 56% as compared with the system operating at the worst-case no tuning condition. Two systems involving commercial filters and custom cavity resonator-based filters were constructed. The filters further increase the system P textsubscript 1dB,IN by the filter rejection of the interference signal. The rest of the controls consume about 10% of the worst-case condition LNA power. 
    more » « less